

Investigation of risk factors for avian influenza virus contamination of Live bird markets (LBM) in Chattogram, Bangladesh

Md. Helal Uddin¹, Anne Conan^{2,3}, Saira Butt⁶, Pangkaj Kumar Dhar¹, Mahmudul Hasan⁴, Angus Lam², Jinnat Ferdous⁵, Rashed Mahmud¹, Paritosh Kumar Biswas¹, Guillaume Fournie^{6,7}, Md. Ahasanul Haque¹

¹Chattogram Veterinary & Animal Sciences University (CVASU), Chattogram, Bangladesh; ²City University of Hong Kong, ³French Agricultural Research Centre for International Development (CIRAD), Harare, Zimbabwe, ⁴Bangladesh Livestock Research Institute (BLRI), Savar, Bangladesh, ⁵The University of Queensland, Australia, ⁶Royal Veterinary College, London, UK; ⁷Food and the Environment (INRAE), France <u>* helal.cvasu43@gmail.com</u>

Introduction

- Live bird market (LBM) are essential to the
 - Poultry trading "Hub"
 - Hotspots for the emergence, risk and transmission of AIVs
- LBM play a critical role in the poultry value chain, they also act as a public health threat to amplification, spread and dissemination of AI viruses.
- Despite frequent detection AIV in LBM, the risk factors of AIV contamination on stall level within LBM of Bangladesh are poorly understood

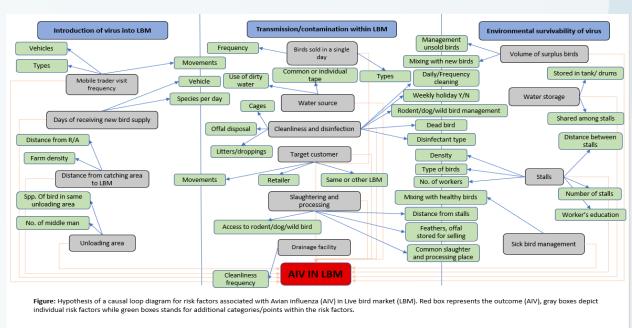
Hypothesis & Objective

- We hypothesis that avian influenza virus subtypes (H5N1 and H9N1) detection is associated with biosafety and biosecurity measures at the stall level
- This study aims to identify risk factors into stall associated with LBM biosecurity and management

Investigation of avian influenza virus contamination of live bird market in Chattogram, Bangladesh Md. Helal Uddin¹, Anne

Conan^{2,3}, Saira Butt⁶, Pangkaj Kumar Dhar¹, Mahmudul Hasan⁴, Angus Lam², Jinnat Ferdous⁵, Rashed Mahmud¹, Paritosh Kumar Biswas¹, Guillaume Fournie^{6,7}, Md. Ahasanul Hague¹

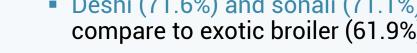


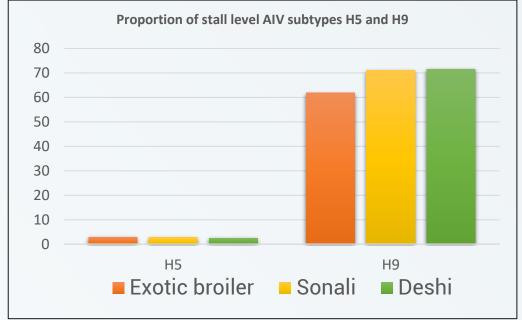

Methods

- A cross sectional study was conducted for broiler, Sonali and deshi chickens into the LBM stalls
 Between August 2021 and January 2022 Random sampling
- A total 4354 oropharyngeal and cloacal swab samples in 344 stalls were collected from live healthy chickens and a questionnaire was used to record the information about biosecurity and management practice
- Samples were placed in VTM and testing of M gene subsequently AIV subtypes H5 and H9

Results

Of 4354 tested sample by RT-PCR, 644 were positive. Of market samples H5 (14%) and H9 (98%)


Investigation of avian influenza virus contamination of live bird market in Chattogram, Bangladesh Md. Helal Uddin!, Anne


Conan^{2,3}, Saira Butt⁶, Pangkaj Kumar Dhar¹, Mahmudul Hasan⁴, Angus Lam², Jinnat Ferdous⁵, Rashed Mahmud¹, Paritosh Kumar Biswas¹, Guillaume Fournie^{6,7}, Md. Ahasanul Haque1

Discussion

- The higher prevalence of avian influenza virus subtypes at stall of the LBM
 - Higher detection of H9 compare to **H5**
- High proportion of H9 positive were found at stall
 - Deshi (71.6%) and sonali (71.1%) compare to exotic broiler (61.9%)

Conclusions

- Effective and protective measures and mitigation strategies for risks outlined
- Recommendations
 - Intervention might reduce the burden of H9 AIV subtypes into the LBM stalls

Acknowledgement

