Investigating the presence of stalk directed avian influenza antibodies in highly exposed occupational workers in live bird markets in Bangladesh

Rebecca Daines ${ }^{1 *}$, Patrick Nguipdop-Djomo²*, Mahbubur Rahman ${ }^{3}$, Sudipta Sarkar ${ }^{3}$, Ahmed Nawsher Alam ${ }^{3}$, Tahmina Shirin ${ }^{3}$, Saira Butt ${ }^{4}$, Anne Conan ${ }^{4}$, Guillaume Fournie ${ }^{4}$, Munir Iqbal ${ }^{1 \dagger}$, Punam Mangtani ${ }^{2 \dagger}$, on behalf of the One Health Poultry Hub consortium.
${ }^{1}$ The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 ONF, United Kingdom,
${ }^{2}$ London School of Hygiene and Tropical Medicine (LSHTM), Keppel Street, London, WC1E 7HT, United Kingdom,
${ }^{3}$ Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Dhaka, Bangladesh,
${ }^{4}$ Royal Veterinary College, Hertfordshire, AL9 7TA, United Kingdom,
${ }^{5}$ City University of Hong Kong, 6/A/B, Yuen Long Science and Technology Centre, 11 Wang Yip West Street, Yuen Long District, New Territories, China.

Introduction and Hypothesis

Repeated exposure to influenza has shown to induce broader cross-reactive antibodies, including haemagglutinin (HA) stalk-directed, alleviating disease by promoting antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP).

Hypothesis: those in persistent proximity to poultry and repeatedly exposed to avian influenza viruses (AIVs) have increased cross-protective immunity.

Methods

1. Acquisition of human sera:
a) Pilot survey (Feb/Mar 2022): poultry workers ($n=204$), fruit and vegetable sellers ($n=87$).
b) Cohort study (Feb/Mar 2023): poultry workers, $\mathrm{n}=415$, fruit and vegetable sellers, $\mathrm{n}=212$.
2. Generation of chimeric HA soluble proteins (insect cell expression) and viruses (reverse genetics (RG)).
3. Identification of stalk-directed antibodies by ELISA.
4. Future investigation of neutralisation capabilities by microneutralisation.

Stalk-targeting antibodies have greater crossreactivity between human and avian influenza viruses (IV).

To identify stalk-targeting antibodies of humans in the poultry sector exposed to endemic avian IVs, chimeric proteins were engineered as H1O(head domain)-H5(stalk domain) and H10(head domain)-H9(stalk domain) using recently isolated H5N1 (clade 2.3.2.1a) and H9N2 (G1 lineage) sequences. The globular head of HA was replaced at the cystine bridge at the stalk superior. Whole H5 and H9 proteins were constructed to identify antibody presence and to compare to the chimeras.

Figure 1: Chimeric haemagglutinin (HA) design for expression in insect cell system. H10/H9 HA used as example. Globular head (purple), stalk domain (blue). Signal peptide (SP), transmembrane domain (TMD) and cytoplasmic tail (CT) removed for expression.

H 10 was selected as a redundant head as the human infection rate is incredibly low and targeting antibodies unlikely.

Biotechnology and Biological Sciences
Research Council

Results Continued

	Positive (Pilot Study)	
Protein	N	$\%$
H5	165	68.75
H9	89	37.08
H10/H9	25	10.42

Table 1: Positive serum samples to $H 5, H 9$ and chimeric H10/H9 proteins by ELISA. Negative sera deemed with values <0.38.

- Presence of targeting antibodies to whole H 5 and H 9 proteins and H 10 H 9 chimeric proteins were identified by indirect ELISA.
- Sera obtained from UK donor bank were used as "negative", providing background cross-reactivity (no AIV exposure but have human IV antibodies).
- There was greater positive binding to H 5 (68.75% of samples), despite the dominance of H9N2 in Bangladesh. May be due to potential cross-reactivity of H 5 to H 1 , hence increased binding.
- $\mathrm{N}=11$ (4.58\% of positive) sera had greatest values to $\mathrm{H} 10 / \mathrm{H} 9$, greater than H 5 and H 9 whole HAs. These individuals likely to carry antibodies targeting H10.

Conclusions and Ongoing Work

- 68.75% of sera were positive in direct binding to H 5 , • Some individuals potentially exposed to H 10 . whereas only 37.08% were to H9.
- 10.42% of samples were positive to $\mathrm{H} 10 / \mathrm{H} 9$ chimeric Consequently, re-engineered chimeric proteins/viruses to incorporate H 13 head. protein but may be skewed due to binding to H 10 head. - Cohort study samples to begin testing.

