# Drivers of avian influenza virus movement within a city:

### Preliminary insights from Dhaka, Bangladesh

Jayna Raghwani, Marie-Cécile Dupas, Francesco Pinotti, Saira Butt, Anne Conan, Ashley Banyard, Ian Brown, Tom Lewis, Joe James, Josh Lynton-Jenkins, Alex Byrne, Nicola Lewis, Mahmudul Hasan, Pangkaj Kumar Dhar, Md. Helal Uddin, Rashed Mahmud, Mohammed Abdus Samad, Md. Ahasanul Hoque, Paritosh Kumar Biswas, Damer Blake, Fiona Tomley, Guillaume Fournié

### INTRODUCTION

In this study, we have analysed ~126 H9N2 virus genome sequences sampled from Dhaka between August 2021 and January 2022, together with metadata about the poultry trading network, to better understand predictors of virus spread within a city.

#### METHODS

Generalised linear model-based phylodynamic approach was undertaken to identify key predictors of virus spread



### KEY HYPOTHESES

Virus movement among markets is likely to be influenced by:



Network connectivity



Trader movement



Niche overlap

Other predictors evaluated: geographic distance, chicken trade, virus prevalence

#### PRELIMINARY RESULTS



- Evidence of clustering by market = recent within market spread
- Intermingling of different colours = between market spread and/or spread from common source



- Virus prevalence, driving distance, in-degree of destination markets are *positively associated* with virus spread between markets
- Out-degree of origin market and network shortest path (based on number of middlemen) are *negatively associated* with virus spread between markets

#### DISCUSSION

Virus spread is greater from markets:

• With higher virus prevalence



Virus spread is greater to markets:

 That are supplied by a higher number of markets

Virus spread is greater **between** markets:



- Separated by greater geographic distance
- Shorter network distance (middlemen)

Also, we find weak evidence for virus movement:

- Between markets that share a higher number of vendors
- Between markets that are more frequently linked in the poultry trade network

### CONCLUSION

- Network connectivity, trader movement, geographic distance, and virus prevalence appear to be important predictors of H9N2 virus movement between Dhaka markets
- Implications for reducing virus spread: Target markets with (1) higher virus prevalence and that (2) supply other markets, (3) limit trade to geographically proximate markets

## FUTURE DIRECTIONS

- Evaluate robustness of these results, including highly correlated predictors (e.g. niche overlap and network shortest path)
- Are similar predictors also implicated in virus spread between Chattogram markets?
- What factors influence virus movement between cities?