Transmission dynamics of H9N2 Avian Influenza virus in a live-bird market in Chattogram, Bangladesh

Francesco Pinotti¹*, Lisa Kohnle², José Lourenço³, Sunetra Gupta¹, Md. Ahasanul Hoque⁴, Rashed Mahmud⁴, Paritosh Biswas⁴, Dirk Pfeiffer^{2,5}, Guillaume Fournié^{5,6,7}

¹University of Oxford, Oxford, UK; ²City University of Hong Kong, Hong Kong SAR, Hong Kong; ³Biomedical Research Centre, Universidade Católica Portuguesa, Oeiras, Portugal; ⁴Chattogram Veterinary and Animal Sciences University, Chittagong, Bangladesh; ⁵Royal Veterinary College, London, UK; ⁶INRAE, VetAgro Sup, UMR EPIA, Université de Lyon, Marcy l'Etoile, France; ⁶INRAE, VetAgro Sup, UMR EPIA, Université Clermont Auvergne, Saint Genes Champanell, France *francesco.pinotti@biology.ox.ac.uk

Introduction

- H9N2 Avian Influenza virus (AIV) is endemic in Bangladeshi poultry
 - $\circ\;$ Infection impairs chicken growth and causes economic damage
 - It is highly prevalent in live-bird markets (LBMs)
 - $\circ~$ It is zoonotic and is involved in the generation of highly pathogenic AIVs
- We aim to characterize H9N2 AIV epidemiology in an LBM
 - Estimate epidemiological parameters (e.g. latent period)
 - Measure H9N2 AIV transmission potential
 - Assess the role of external introductions
 - $\circ~$ Assess the effectiveness of interventions

Hypothesis

H9N2 AIV spreads rapidly among marketed poultry and is able to persist in LBMs.

Transmission dynamics of H9N2 Avian Influenza Virus in a live-bird market in Chattogram, Bangladesh

Francesco Pinotti, Lisa Kohnle, José Lourenço, Sunetra Gupta, Md. Ahasanul Hoque, Rashed Mahmud, Paritosh Biswas, Dirk Pfeiffer, Guillaume Fournié

ONE HEALTH POULTRY HUB

Methods and results

- Methods
 - Fitted a transmission model
 - Used infection data from the field
 - Accounted for LBM dynamics
 - Simulated interventions
- Results
 - \circ Short latent times in broilers
 - $\circ~$ High transmission potential
 - >80% probability of infection after 24h within LBM
 - $\circ\,$ High frequency of viral introductions
 - Heterogenous effectiveness of interventions:
 - (A) Shorter length of stay
 - (B) Reduced pre-LBM exposure
 - (C) Vaccinations

Transmission dynamics of H9N2 Avian Influenza Virus in a live-bird market in Chattogram, Bangladesh

Francesco Pinotti, Lisa Kohnle, José Lourenço, Sunetra Gupta, Md. Ahasanul Hoque, Rashed Mahmud, Paritosh Biswas, Dirk Pfeiffer, Guillaume Fournié

Discussion

- LBMs provide a suitable environment for H9N2 AIV transmission
 - $_{\odot}\,$ Short latent times allow onward transmission despite rapid sales
 - $\circ\,$ Rapid turnover provides a continuous supply of susceptible chickens..
 - $\circ \ .. and \ introduces \ infected \ chickens$
 - $\,\circ\,$ Interventions differ in terms of effectiveness
- Curbing H9N2 AIV spread requires a multi-pronged approach
 - $\circ\,$ Combine multiple interventions in LBMs: shorter length of stay, improving biosecurity, ...
 - o Important to intervene upstream as well (farms, middlemen)
 - $\circ~$ Introduce widespread vaccination
 - $\circ~\mbox{Important}$ to monitor AIV circulation in LBMs

ONE

POU